Серия «Природа»

3600
THE SPACEWAY
Природа Природа

Откуда на Земле столько нефти? Спойлер: динозавры ни при чем3

Серия Природа

Вы, вероятно, когда-то слышали, что нефть образовалась из останков динозавров. Следовательно, когда вы заправляете автомобиль, то буквально заливаете в бак переработанного тираннозавра или велоцираптора. Каким бы распространенным ни был этот миф, он не имеет ничего общего с реальностью.

© <!--noindex--><a href="https://pikabu.ru/story/otkuda_na_zemle_stolko_nefti_spoyler_dinozavryi_ni_pri_chem_13593869?u=http%3A%2F%2Funivision.com&t=univision.com&h=6fdc9d013985d3a878e0ec090c8db06ae5d48b52" title="http://univision.com" target="_blank" rel="nofollow noopener">univision.com</a><!--/noindex-->

© univision.com

Настоящая история черного золота

На протяжении сотен миллионов лет мертвые водоросли и планктон опускались на дно древних морей и океанов Земли, где накапливались, формируя многослойные структуры. Постепенно их погребали осадочные породы, что создавало идеальные условия для трансформации.

Под воздействием колоссального давления и при дефиците кислорода органические остатки буквально "сварились", превратившись в густую черную жидкость — нефть, которой мы, люди, видимо, насытимся не скоро, несмотря на климатические изменения, набирающие обороты.

Примечательно, что процесс образования нефти продолжается и сегодня - планктон по-прежнему умирает и оседает на океаническое дно. Но для превращения этой массы в "черное золото" нужны десятки миллионов лет, поэтому нефть считается невозобновляемым ресурсом.

Нефть легче горных пород, поэтому под действием подземного давления постепенно мигрирует к поверхности, где упирается в непроницаемые горные породы. Скважины, пробуренные людьми, способны изменить ситуацию — напор нефти устремляется наружу. В некоторых случаях нефть может "вырваться на свободу" и без участия человека. Например, в результате сильного землетрясения.

"Если все это действительно так, то почему нефтяные месторождения встречаются не только в океане, но и на суше?" — спросит недоверчивый читатель.

Все просто: современные нефтяные месторождения на суше когда-то были дном древних морей. Естественное движение тектонических плит и изменение уровня океанов за сотни миллионов лет кардинально изменили географию Земли. И эти изменения непрерывно продолжаются. То, что сегодня является сушей, через сотни миллионов лет может стать дном какого-нибудь нового моря.

Без этих крошечных существ, населявших земные океаны с незапамятных времен, не было бы нефти / © <!--noindex--><a href="https://pikabu.ru/story/otkuda_na_zemle_stolko_nefti_spoyler_dinozavryi_ni_pri_chem_13593869?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

Без этих крошечных существ, населявших земные океаны с незапамятных времен, не было бы нефти / © pinterest.com

Почему не динозавры?

Морские динозавры, разумеется, тоже умирали и опускались на океаническое дно, но нефтью в итоге не стали. Связано это с тем, что крупные туши поедались быстрее, чем оказывались погребенными под толщей других туш, а после осадочных пород.

Для образования нефти нужна бескислородная среда, где органика может "вариться" миллионы лет без разложения. Микроскопические водоросли и планктон в огромных количествах создавали именно такие условия — их было слишком много, чтобы все съели.

Показать полностью 2
213

Почему глобальное потепление приносит суровые зимы?

Серия Природа

Зимой 2021 года жители теплого Техаса замерзали в домах без отопления, а в апреле и мае 2025 года аномальные снегопады накрыли сразу несколько регионов России. При этом климатологи продолжают утверждать, что планета нагревается. Разве в этом нет противоречия? На самом деле, суровые зимы — это не опровержение глобального потепления, а его прямое следствие.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

Когда защитный барьер дает сбой

Над Северным полюсом Земли с огромной скоростью постоянно вращается гигантский воздушный вихрь, который представляет собой природный защитный барьер по сдерживанию арктического холода в северных широтах.

Арктика нагревается в два раза быстрее остальной планеты — явление, которое ученые называют арктической амплификацией. Связано это с тем, что из-за глобального потепления уменьшается отражающая способность льдов: растаявший лед обнажает темную воду, которая жадно поглощает солнечную энергию и нагревается, вызывая еще большее таяние льда (замкнутый круг). Из-за этого разность температур между полюсом и умеренными широтами уменьшается, и полярный вихрь утрачивает стабильность.

Когда этот воздушный барьер ослабевает, он начинает "волниться", как флаг на сильном ветру. И время от времени "языки" арктического воздуха прорываются далеко на юг, принося морозы и осадки туда, где их не ждут. За последние 30 лет частота таких климатических "побегов" увеличилась более чем в полтора раза, и этот показатель продолжает расти. Поэтому мы все чаще будем сталкиваться с заголовками о том, что в какой-то южный регион пришло внезапное похолодание или тысячи огородников лишились всех своих посадок из-за снегопада и заморозков в июне.

Океан меняет свои привычки

Гольфстрим — мощное теплое течение в Атлантическом океане — это гигантская "печка" Европы и северо-западной России, тепловой конвейер, который несет теплую воду из тропиков к берегам Норвегии, Британии и Мурманска. Благодаря ему в Лондоне зимой теплее, чем в Нью-Йорке, хотя британская столица находится севернее канадского Лабрадора.

Схема переноса тепла течением Гольфстрим / © NOAA

Схема переноса тепла течением Гольфстрим / © NOAA

Однако глобальное потепление ударило и по этой системе. Таяние гренландских ледников насыщает Северную Атлантику миллиардами тонн пресной воды. Эта вода легче морской соленой, поэтому она не опускается в глубины океана при охлаждении и не создает тот самый "всасывающий эффект", который подтягивает новую теплую воду с юга, нарушая работу всего теплового конвейера.

Ученые фиксируют замедление Атлантической меридиональной циркуляции на 15% с середины прошлого века, и этот процесс только ускоряется. Европа и европейская часть России постепенно лишаются своего природного обогревателя. Таким образом, глобальное потепление делает зимы в этих регионах все более суровыми, а снегопады — более разрушительными.

Больше влаги — больше снега

Каждый градус потепления океана увеличивает испарение воды примерно на 7%. Атмосфера насыщается этой избыточной влагой, словно гигантская губка, готовая выжать всю накопленную жидкость при первой возможности.

И в нашей реальности возможность не заставляет себя ждать. Когда влажный воздух сталкивается с прорывами арктического холода, результат может быть жутко впечатляющим — снегопады такой интенсивности, что за несколько часов выпадает месячная норма осадков.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

Примечательно, что общее количество снежных дней в году сокращается, но отдельные снегопады становятся все более обильными и опасными.

Именно из-за глобального потепления мы наблюдали снежные бури в Мадриде, замерзшие фонтаны в Риме и ледяной дождь, обрушившийся на американский Техас — штат, где растут пальмы.

Новые правила старой игры

Климатическую систему Земли можно сравнить со сложным часовым механизмом, где абсолютно все шестеренки взаимосвязаны. Когда мы, человечество, насыщаем атмосферу парниковыми газами (углекислый газ, метан), то мы не просто немного "повышаем градус" — мы меняем скорость вращения всех шестеренок сразу.

Глобальное потепление — это не равномерное нагревание планеты, которое можно предсказать на годы и столетия вперед, а фундаментальная перестройка всех климатических процессов. В некоторых регионах действительно становится теплее, но в других — холоднее; третьи страдают от засух, а четвертые — от наводнений.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

Экстремальные зимние холода и снегопады не опровергают факт климатических изменений — они лишь подтверждают, что эти изменения запущены и набирают обороты. Погода становится более непредсказуемой, более контрастной и порой совершенно парадоксальной.

В новой климатической реальности мы должны привыкать к неожиданностям: к июльскому граду размером с мячи для настольного тенниса, к январским оттепелям в Сибири и к февральским морозам в субтропиках. Планета меняет правила игры, и нам остается только адаптироваться к этим новым, более жестким условиям.

Показать полностью 4
956

Чернила головоногих — одно из самых элегантных изобретений природы1

Серия Природа

У головоногих моллюсков — осьминогов, каракатиц и кальмаров — есть удивительный инструмент выживания, используемый ими в критический момент. Речь идет о чернилах, которые оказались гораздо более сложным и эффективным механизмом защиты, чем считалось ранее.

Далеко не все обитатели океана хотят становиться объектом исследований / © <!--noindex--><a href="https://pikabu.ru/story/chernila_golovonogikh__odno_iz_samyikh_yelegantnyikh_izobreteniy_prirodyi_13584540?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

Далеко не все обитатели океана хотят становиться объектом исследований / © pinterest.com

Оказавшись в роли потенциальной добычи, головоногие мгновенно выбрасывают чернила. Это отпугивает и дезориентирует хищника, давая моллюскам драгоценное время для побега и поиска укрытия. Чернила выбрасываются из специального мешка внутри тела — модифицированного выроста прямой кишки. Состав поразительно прост: меланин (тот же пигмент, что придает цвет нашим волосам, глазам и коже) и органическая слизь.

Современные исследования показывают, что чернила головоногих — это больше чем просто "дымовая завеса". Фермент тирозиназа, играющий ключевую роль в производстве меланина, способен вызывать серьезное раздражение глаз хищника. Чернильное облако также временно нарушает обоняние и вкусовые рецепторы нападающего, полностью — хотя и временно — дезориентируя его в водной среде.

Примечательно, что чернильное облако служит еще и системой раннего предупреждения для других обитателей океана. Увидев темное пятно в воде, морские животные понимают: поблизости хищник, и пора прятаться. Таким образом, одно головоногое создание может спасти жизни множества соседей.

© <!--noindex--><a href="https://pikabu.ru/story/chernila_golovonogikh__odno_iz_samyikh_yelegantnyikh_izobreteniy_prirodyi_13584540?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

© pinterest.com

Вопреки распространенному заблуждению, чернила головоногих не ядовиты. И хотя у этих моллюсков действительно есть ядовитые железы (особенно у синекольчатого осьминога), но они никак не связаны с чернильным мешком — это совершенно разные защитные механизмы.

Не все головоногие обладают этой чрезвычайно полезной защитной способностью. Чернильный мешок отсутствует у древних наутилусов и группы глубоководных осьминогов, включая очаровательного осьминога дамбо. Но для них это не критично: наутилусы полагаются на крепкие раковины, а глубоководные виды живут там, где хищников практически нет.

Милейший осьминог дамбо решил поселиться на глубине, где вероятность стать добычей намного меньше / © <!--noindex--><a href="https://pikabu.ru/story/chernila_golovonogikh__odno_iz_samyikh_yelegantnyikh_izobreteniy_prirodyi_13584540?u=http%3A%2F%2Flightsidescience.com&t=lightsidescience.com&h=4609892125e935cde538d4c69065f740dd083c6c" title="http://lightsidescience.com" target="_blank" rel="nofollow noopener">lightsidescience.com</a><!--/noindex-->

Милейший осьминог дамбо решил поселиться на глубине, где вероятность стать добычей намного меньше / © lightsidescience.com

Большинство головоногих не могут похвастаться твердым панцирем, острыми шипами или высокой скоростью. Зато природа наделила их гораздо более интересной способностью — мгновенно становиться невидимыми и полностью дезориентировать врага. Чернильная защита — это результат миллионов лет эволюции, породившей одну из самых элегантных систем выживания в Мировом океане.

Показать полностью 3
657

Гигантский тихоокеанский осьминог: властелин холодных вод

Серия Природа

Гигантский тихоокеанский осьминог (лат. Enteroctopus dofleini) — самый крупный представитель осьминогов на Земле. Взрослые особи в среднем весят от 15 (самки) до 50 килограммов (самцы), а размах их щупалец в среднем достигает 4-5 метров. Науке известен настоящий исполин этого вида, который весил 272 килограмма при размахе щупалец 9,6 метра!

© <!--noindex--><a href="https://pikabu.ru/story/gigantskiy_tikhookeanskiy_osminog_vlastelin_kholodnyikh_vod_13576931?u=http%3A%2F%2Fdogabilim.org&t=dogabilim.org&h=7ff83ab906e4ee18e8a8e6139d289a0ec2176330" title="http://dogabilim.org" target="_blank" rel="nofollow noopener">dogabilim.org</a><!--/noindex-->

© dogabilim.org

Окраска гиганта обычно красновато-розовая с тонкими прожилками, напоминающими замысловатые узоры. Нижняя сторона восьми мощных щупалец серо-белая, и все они покрыты огромным количеством присосок — у самок их всего 2 240, у самцов на 100 меньше. Эти присоски обеспечивают не только железную хватку, но и тонкое обоняние и вкус.

© <!--noindex--><a href="https://pikabu.ru/story/gigantskiy_tikhookeanskiy_osminog_vlastelin_kholodnyikh_vod_13576931?u=http%3A%2F%2Fdogabilim.org&t=dogabilim.org&h=7ff83ab906e4ee18e8a8e6139d289a0ec2176330" title="http://dogabilim.org" target="_blank" rel="nofollow noopener">dogabilim.org</a><!--/noindex-->

© dogabilim.org

Самые крупные присоски гигантского тихоокеанского осьминога имеют диаметр 6,4 сантиметра и способны выдерживать вес до 16 килограммов. Как и все осьминоги, герой этой статьи — головоногий моллюск без костей. Это означает, что он может протиснуться через любое отверстие, куда проходит клюв — единственная твердая часть тела.

Где обитает и как долго живет

Гигантский тихоокеанский осьминог населяет холодные воды северной части Тихого океана — от Кореи и Японии до побережья Канады, США и Мексики. В России его можно встретить в Японском, Охотском и Беринговом морях.

© <!--noindex--><a href="https://pikabu.ru/story/gigantskiy_tikhookeanskiy_osminog_vlastelin_kholodnyikh_vod_13576931?u=http%3A%2F%2Fdogabilim.org&t=dogabilim.org&h=7ff83ab906e4ee18e8a8e6139d289a0ec2176330" title="http://dogabilim.org" target="_blank" rel="nofollow noopener">dogabilim.org</a><!--/noindex-->

© dogabilim.org

Осьминог предпочитает воду температурой от 15 градусов Цельсия и ниже. Обитает как на мелководье (иногда его можно обнаружить даже в приливных лужах), так и на глубине до 1 500 метров. Это поразительное создание ведет одиночный образ жизни, предпочитая скрываться в скалистых логовах, расщелинах и пещерах среди валунов.

Живет гигантский тихоокеанский осьминог от трех до пяти лет, что относительно много для представителей его вида (большинство других осьминогов не доживают и до года). К концу жизни находит пару для размножения, оставляет потомство и вскоре погибает.

Охота и питание

Гигантский тихоокеанский осьминог — скрытный и прожорливый охотник. Его рацион состоит в основном из крабов, креветок, моллюсков, рыбы и даже других осьминогов меньшего размера. Добычу застает врасплох за счет своего продвинутого камуфляжа, а после резко хватает ее всеми восемью щупальцами и утаскивает в логово.

© <!--noindex--><a href="https://pikabu.ru/story/gigantskiy_tikhookeanskiy_osminog_vlastelin_kholodnyikh_vod_13576931?u=http%3A%2F%2Fonedio.com&t=onedio.com&h=2bed7df56f50dc82762f5b756f36edd582d8952c" title="http://onedio.com" target="_blank" rel="nofollow noopener">onedio.com</a><!--/noindex-->

© onedio.com

Чтобы добраться до желаемого лакомства, осьминог использует три метода борьбы с твердым панцирем: банально разрывает добычу силой, раскусывает мощным клювом или "просверливает" панцирь. Для сверления хищник размягчает панцирь своей специфической слюной, параллельно соскабливая материал жестким языком-радулой. В процессе получается отверстие, через которое осьминог впрыскивает токсин, парализующий добычу и растворяющий соединительные ткани. Через несколько минут жертва легко разрывается на части и съедается.

Панцири, очищенные от съедобного содержимого, осьминог относит в "мусорную кучу" около логова. Ученые изучают эти кучи, чтобы узнать больше о рационе гигантских осьминогов.

Камуфляж — инструмент выживания

Не имея защитного панциря, гигантский тихоокеанский осьминог полагается на одну из самых сложных систем камуфляжа в животном мире. Под его кожей скрываются миллионы эластичных клеток, называемых хроматофорами, которые содержат цветные пигменты.

© <!--noindex--><a href="https://pikabu.ru/story/gigantskiy_tikhookeanskiy_osminog_vlastelin_kholodnyikh_vod_13576931?u=http%3A%2F%2Fensonhaber.com&t=ensonhaber.com&h=14c0a7fba0b64651adaa46a8a677703835040d88" title="http://ensonhaber.com" target="_blank" rel="nofollow noopener">ensonhaber.com</a><!--/noindex-->

© ensonhaber.com

Полагаясь на чрезвычайно острое зрение, осьминог крайне эффективно распознает узоры и текстуры окружающей среды, а затем почти мгновенно — словно по мановению волшебной палочки — меняет цвет кожи, расширяя или сжимая хроматофоры. Примечательно, что осьминоги не различают цвета. Как им удается столь точно имитировать цветовую гамму окружения — вопрос без ответа.

Интеллект и поведение

В естественных условиях большую часть времени гигантские тихоокеанские осьминоги прячутся в логовах, водорослях или маскируясь на дне. Для перемещения в водной толще они используют реактивное движение — втягивают воду в полость тела и с силой выталкивают через сифон (трубчатый орган, представляющий собой измененную ногу), обеспечивая мощный толчок. По дну же осьминоги ползают на щупальцах, периодически останавливаясь и сливаясь с окружающей средой для оценки ситуации.

© <!--noindex--><a href="https://pikabu.ru/story/gigantskiy_tikhookeanskiy_osminog_vlastelin_kholodnyikh_vod_13576931?u=http%3A%2F%2Fguatemala.inaturalist.org&t=guatemala.inaturalist.org&h=5045c59eecf35892662615ad4add7e90e0d16d40" title="http://guatemala.inaturalist.org" target="_blank" rel="nofollow noopener">guatemala.inaturalist.org</a><!--/noindex-->

© guatemala.inaturalist.org

Гигантские тихоокеанские осьминоги обладают высоким интеллектом — они способны запоминать лица людей, решать головоломки и даже проявлять интерес к дайверам. В океанариумах они славятся способностью к побегу из своих резервуаров — порой протискиваются через щели в крышке и отправляются исследовать соседние аквариумы в поисках добычи или просто из любопытства.

Показать полностью 6
20

Почему мы стареем?

Серия Природа

Старение кажется неизбежным — тело слабеет, клеточные повреждения накапливаются, органы отказывают. Однако ключевая причина старения вовсе не в том, что организм постепенно "изнашивается", как старая машина, которая передавалась из поколения в поколение. Все намного интереснее.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

Биологи давно поняли, что старение — результат работы эволюции. Активная фаза естественного отбора продолжается до тех пор, пока организм способен передавать гены будущему потомству. Потом, после репродуктивного возраста, природа просто "забывает" о нас, так как мы ей больше не нужны — мутации, вызывающие старение, перестают отсеиваться отбором.

Главная причина старения — антагонистическая плейотропия

В 1957 году эволюционный биолог Джордж Уильямс (12 мая 1926 года — 8 сентября 2010 года) предложил теорию антагонистической плейотропии, суть которой проста, но поразительна: гены, которые выгодны организму в раннем и репродуктивном возрасте, обладают неизбежными побочными эффектами, которые в более позднем возрасте вызывают старение и в итоге приводят к смерти.

Это значит, что эволюция "жертвует" нашим долголетием ради того, чтобы мы дожили до репродуктивного возраста и оставили как можно больше потомства.

Как это работает?

Например, мутации, вызывающие перепроизводство половых гормонов, увеличивают либидо и повышают шансы на эффективное размножение. И эти гены сохраняются даже после выполнения "эволюционной миссии", несмотря на то, что позже они могут провоцировать рак половых органов.

Другой пример — процесс аутофагии (клеточного самопереваривания), который жизненно важен для молодого организма, но после репродуктивного возраста начинает давать сбои и запускает процесс старения.

Согласно теории Уильямса, быстрое достижение организмом репродуктивного возраста должно коррелировать с быстрым старением и малой продолжительностью жизни. Именно поэтому животные, которые способны к активному размножению через несколько недель после появления на свет, обычно живут очень мало.

Например, мыши достигают репродуктивного возраста через 5-7 недель после рождения, и их продолжительность жизни в природе обычно не превышает 18 месяцев. А вот слоны, достигающие репродуктивного возраста к 19-20 годам, в среднем живут 65 лет.

Эволюция против бессмертия

В силу возрастного снижения репродуктивной активности снижается и эффективность естественного отбора. После того как организм передал гены потомству, эволюции становится все равно, что с ним будет дальше.

Природе нужны не долгожители с их планами и амбициями, а максимально эффективные родители.

Старение можно замедлить?

В 2017 году исследователи из Института молекулярной биологии (IMB) в Майнце отключили аутофагию в нейронах старых червей, что привело к улучшению здоровья беспозвоночных и увеличению продолжительности их жизни на 50%. И это при том, что аутофагия была деактивирована только в нейронах.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

Этот эксперимент доказывает, что старение — не физический закон природы, а эволюционная стратегия. И теоретически правила игры можно изменить.

Резюмируя

Старение и смертность — не ошибка природы и не банальный износ организма. Это цена, которую живые существа платят за успешное размножение в молодости. Гены, которые играют критически важную роль в юном возрасте, позже становятся вредными и опасными.

Но эволюция продолжает оставаться верной своему принципу: успешное размножение важнее продолжительности жизни.

Изучение механизмов антагонистической плейотропии вкупе с клиническими испытаниями откроет дверь к замедлению старения и резкому увеличению продолжительности жизни.

Показать полностью 2
18

Рыба-капля: морской обитатель с лицом грустного старика

Серия Природа

Рыба-капля (лат. Psychrolutes marcidus) выглядит так, будто жизнь ее очень сильно потрепала. Мягкое желеобразное тело, опущенные уголки "рта", нос-картошкой — идеальное карикатурное лицо измученного старика, который за долгие годы успел устать от всего на свете.

© <!--noindex--><a href="https://pikabu.ru/story/ryibakaplya_morskoy_obitatel_s_litsom_grustnogo_starika_13567742?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

© pinterest.com

Но самое забавное в этой истории то, что в естественной среде обитания рыба-капля выглядит не так, как на знаменитых фотографиях.

Где живет и почему такая "мятая"

Рыба-капля обитает на глубине до 1 200 метров, в зоне, где давление в десятки раз выше, чем у поверхности. У рыб, чувствующих себя комфортно в таких условиях, нет привычных плавательных пузырей и крепких костяков — любое "нормальное" тело просто раздавит. Поэтому рыба-капля практически лишена мышц и твердых структур, а ее тело скорее напоминает плотное желе, стабильность формы которого обеспечивается именно гигантским давлением воды.

Изменение внешнего вида начинается, когда рыбу-каплю вытаскивают наверх. Резкое падение давления приводит к ужасно болезненной декомпрессии, из-за которой внутренности "провисают", кожа обвисает, и рыба начинает походить на унылого старика.

На глубине же она выглядит вполне обычно: не эталон красоты в человеческом понимании, но и не карикатурный персонаж.

© <!--noindex--><a href="https://pikabu.ru/story/ryibakaplya_morskoy_obitatel_s_litsom_grustnogo_starika_13567742?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

© pinterest.com

© <!--noindex--><a href="https://pikabu.ru/story/ryibakaplya_morskoy_obitatel_s_litsom_grustnogo_starika_13567742?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

© pinterest.com

Рыба-капля ведет размеренный, неторопливый образ жизни (ну, прямо как старичок). Она не хищник-убийца и не чудище глубин, заманивающее своих жертв с помощью биолюминесценции. Вместо этого рыба предпочитает зависать у дна и просто хватать ртом то, что проплывает мимо: мелких рачков, личинок, кусочки водорослей и так называемый "морской снег" — смесь разлагающихся остатков растений и животных. Минимум движений и минимум затрат энергии для эффективного выживания в среде, где каждая калория достается с трудом.

Почему она прославилась

Популярной рыбу-каплю сделали мемы про депрессию, хроническую усталость от жизни и "утро понедельника". Люди с чувством самоиронии увидели в ее лице себя — помятых, уставших и вечно невыспавшихся. В итоге интернет превратил эту глубинную рыбу в один из самых "человечных" образов животного мира.

Читайте также:

Показать полностью 3
318

10 захватывающих микрофотографий: красота, скрытая от глаз

Серия Природа

То, что кажется обыденным невооруженному глазу, под микроскопом превращается в фантастические пейзажи и причудливые структуры. Если бы не научно-технический прогресс, то мы бы никогда не познакомились с этими микромирами, где царят свои законы красоты, и где каждый элемент способен поведать захватывающую историю эволюции и функционального совершенствования.

Представляю вашему вниманию подборку из десяти потрясающих микрофотографий, которые открывают дверь в удивительную вселенную малого и непознанного.

Структуры кератина в клетках кожи

Это изображение демонстрирует сложную архитектуру белковых волокон кератина внутри клеток человеческой кожи. Кератин — основной структурный белок, играющий ведущую роль в поддержании прочности, эластичности и здоровья кожи, волос и ногтей.

© Dr. Bram van den Broek, Andriy Volkov, Dr. Kees Jalink, Dr. Nicole Schwarz, and Dr. Reinhard Windoffer

© Dr. Bram van den Broek, Andriy Volkov, Dr. Kees Jalink, Dr. Nicole Schwarz, and Dr. Reinhard Windoffer

Кератиносодержащие клетки (кератиноциты) используются в медицинских исследованиях для изучения процессов старения и разработки новых методов борьбы с ним.

Семенная головка цветка крестовника

Изящная структура соцветия крестовника, заполненная крошечными семенами. У каждого семечка есть пушистый хохолок, который в будущем поможет ему отправиться в воздушное путешествие и, если повезет, попасть в благоприятные условия для прорастания и воспроизводства собственного потомства.

© Dr. Havi Sarfaty

© Dr. Havi Sarfaty

Это прекрасный пример того, насколько продуманными и эффективными могут быть механизмы размножения в природе.

Колония водорослей вольвокс

То, что напоминает знаменитого колобка Pac-Man из одноименной видеоигры, представляет собой сферическую колонию одноклеточных зеленых водорослей вольвокс в момент "разрыва" материнской колонии, высвобождающей дочерние организмы.

© Jean-Marc Babalian

© Jean-Marc Babalian

Вольвокс — шикарный пример коллективного поведения у простейших. Тысячи клеток работают вместе как единый организм.

Голова ленточного червя

Это детальный снимок сколекса — головной части ленточных червей, где располагаются органы фиксации, представленные крючками (снизу) и присосками (две сверху). Эти органы позволяют паразиту надежно крепиться к стенкам кишечника носителя и проживать в таком положении лучшие годы своей жизни, оставляя после себя бесчисленное потомство.

© Teresa Zgoda

© Teresa Zgoda

Сколекс — пример поразительной эволюционной адаптации; миллионы лет поиска идеального решения.

Колония грибов в почве

Это колония грибов в почве. Если бы я увидел это изображение вне контекста, то решил бы, что передо мной работа какого-нибудь пейзажиста из Японии, который запечатлел заходящее Солнце над цветочным полем.

© Tracy Scott

© Tracy Scott

Грибы играют крайне важную роль в экосистемах, взяв на себя обязанности разложения органической материи с целью возвращения питательных веществ в почву. Грибной мицелий формирует сложные подземные сети, некоторых из которых могут простираться на десятки километров. Эти сети используются растениями (включая деревья) для обмена питательными веществами и даже информацией.

Пыльца лилии

Каждое пыльцевое зерно, обладающее сложной скульптурной поверхностью, представляет собой мужскую гамету растения, которая заключена в защитную оболочку с уникальным рельефом.

© Dr. David A. Johnston

© Dr. David A. Johnston

Изучение форм пыльцы и сравнение узоров помогает ботаникам идентифицировать различные виды лилии.

Часть мозга эмбриона цыпленка

Это срез развивающегося мозга куриного эмбриона, который был окрашен в яркие цвета с помощью генетической техники "радужного мозга" (англ. brainbow).

© Dr. Ryo Egawa

© Dr. Ryo Egawa

Такой подход дает возможность идентифицировать различные типы нервных клеток, специфику связи между ними и помогает ученым понять процессы формирования нервной системы.

Внутреннее ухо крысы

Структура улитки внутреннего уха грызуна с чувствительными волосковыми клетками (красные) и нейронами (зеленые).

© Dr. Michael Perny

© Dr. Michael Perny

Этот чрезвычайно сложный инструмент преобразует звуковые волны в электрические сигналы, которые, достигнув мозга, интерпретируются как звук.

Глаз паука-сенокосца

Это один из восьми глаз паука-сенокосца, состоящий из множества линз. И хотя эти членистоногие могут казаться примитивными, их зрительная система — настоящее чудо природной инженерии.

© Charles Krebs

© Charles Krebs

Эти крошечные создания видят дальше и отчетливее, чем человек с самым совершенным зрением.

Пуховые перья большой синицы

Пуховые перья большой синицы состоят из волокон, которые работают как природная дифракционная решетка, обеспечивая переливание всеми цветами радуги.

© Marek Mis

© Marek Mis

Каждое перышко синицы состоит из тысяч и тысяч микроскопических элементов, создающих неповторимый оптический эффект, который помогает птицам в терморегуляции и маскировке.

Читайте также:

Показать полностью 11
102

Два эксперимента, указывающих на естественное происхождение жизни

Серия Природа

В 1913 году в журнале Chemische Berichte появилась статья ничем не примечательного немецкого химика Вальтера Лёба (7 мая 1872 года — 3 февраля 1916 года). Он работал при больнице имени Вирхова в Берлине, никогда не был знаменит и не претендовал на революционные открытия.

Но то, что он сделал, изменило наше понимание происхождения жизни навсегда.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

В рамках незамысловатого авторского эксперимента Лёб взял простые неорганические соединения — воду, аммиак и углекислый газ — и подверг их воздействию электрических разрядов. В результате химик получил глицин (простейшую аминокислоту), формальдегид и сахара.

Почему этот эксперимент так важен? Дело в том, что формальдегид и сахара — это "химические кирпичики", из которых строится все живое на Земле. Лёб доказал экспериментально, что для возникновения основы жизни не нужны магия или "Архитектор".

Почему эксперимент остался незамеченным?

Все проще простого: научное сообщество XX века не интересовал скромный химик из больничной лаборатории. Его работу просто проигнорировали.

Примечательно, что до Лёба, в 1897 году, подобный эксперимент пытались реализовать сербские химики С. М. Лозанич и М. Ц. Йовишич, но не располагали необходимым оборудованием. О теоретическом вкладе своих предшественников Лёб честно упомянул в своей статье.

1953 год: Миллер повторяет открытие

Спустя 40 лет молодой студент Чикагского университета Стэнли Миллер (7 марта 1930 года — 20 мая 2007 года) поставил похожий опыт под руководством нобелевского лауреата Гарольда Юри (29 апреля 1893 года — 5 января 1981 года).

Стэнли Ллойд Миллер / © <!--noindex--><a href="https://pikabu.ru/story/dva_yeksperimenta_ukazyivayushchikh_na_estestvennoe_proiskhozhdenie_zhizni_13553958?u=http%3A%2F%2Fgeneticliteracyproject.org&t=geneticliteracyproject.org&h=edb4c99e45bf01604e0748fb2071417024964b0c" title="http://geneticliteracyproject.org" target="_blank" rel="nofollow noopener">geneticliteracyproject.org</a><!--/noindex-->

Стэнли Ллойд Миллер / © geneticliteracyproject.org

Миллер создал в лаборатории "первичный бульон": смесь метана, аммиака, водорода и воды. Имитируя молнии электрическими разрядами, он инициировал химические реакции.

Через неделю в колбе было обнаружено пять аминокислот — "строительные блоки" белков, из которых состоит все живое.

Результаты эксперимента Миллера были опубликованы в журнале Science в 1953 году, и они тут же сделали его знаменитым. Этот эксперимент стал одним из самых цитируемых в истории биологии (когда я учился в школе, то мы его даже повторяли).

Повторный анализ

Миллер — настоящий ученый, который позаботился о том, чтобы будущие поколения имели доступ к его исходным материалам. В 2008 году исследователи проанализировали запечатанные пробирки из оригинальных экспериментов 1950-х годов, используя современные методы и инструменты.

Результат оказался еще более впечатляющим: вместо пяти аминокислот, которые идентифицировал Миллер, в пробирках нашли 22 аминокислоты! Просто в 1953 году в распоряжении ученых еще не было достаточно чувствительного оборудования, чтобы их все обнаружить.

© <!--noindex--><a href="https://pikabu.ru/story/dva_yeksperimenta_ukazyivayushchikh_na_estestvennoe_proiskhozhdenie_zhizni_13553958?u=http%3A%2F%2Fneviditelnycert.cz&t=neviditelnycert.cz&h=f6dd6898e4031324f919b12803443a6680678990" title="http://neviditelnycert.cz" target="_blank" rel="nofollow noopener">neviditelnycert.cz</a><!--/noindex-->

© neviditelnycert.cz

Это означает, что "первичный бульон" молодой Земли, который воссоздал в лаборатории Миллер, был гораздо богаче органическими соединениями, чем считалось ранее.

Революционные эксперименты

Эксперименты Лёба и Миллера доказывают один фундаментальный факт: ключевые молекулы, необходимые для возникновения жизни, могли сформироваться естественным образом на молодой Земле.

Все необходимые для этого ингредиенты были в изобилии:

  • Вода — покрывала большую часть планеты;

  • Простые газы (метан, аммиак, водород) — присутствовали в атмосфере;

  • Электрические разряды — молнии бушевали постоянно;

  • Вулканическая активность обеспечивала дополнительную энергию и доставляла новые химические элементы.

Ранняя Земля была гигантской естественной лабораторией, в которой на протяжении миллионов лет шли химические эксперименты. И в итоге эти эксперименты привели к появлению первых клеток, а затем — к невероятному разнообразию жизни, которое мы видим сегодня.

Современные исследования

Сегодня ученые пытаются разобраться с тем, как из простых аминокислот могли сформироваться первые самовоспроизводящиеся молекулы — предки ДНК и РНК.

Это все еще одна из величайших загадок науки. Но благодаря забытому эксперименту Вальтера Лёба и знаменитому опыту Стэнли Миллера мы знаем: для появления жизни не требуется магия. Нужны лишь правильные химические условия и время.

© Dreamina/TheSpaceway

© Dreamina/TheSpaceway

Понимание механизма зарождения жизни нисколько не умаляет того, что жизнь сама по себе — невероятное чудо. Напротив — это делает ее еще более удивительной. Подумайте: простые молекулы, столкнувшиеся в первичном океане миллиарды лет назад, породили невероятную цепочку событий. От первых аминокислот до человека, способного изучать собственное происхождение, задавать вопросы, искать ответы и восхищаться красотой Вселенной.

Это чудо не становится меньше оттого, что мы понимаем его химию. Оно становится глубже, масштабнее, величественнее. Мы — дети звездной пыли и электрических разрядов, случайной встречи молекул и миллиардов лет эволюции. И в этом — настоящее волшебство познания.

Читайте также:

Показать полностью 4
Отличная работа, все прочитано!

Темы

Политика

Теги

Популярные авторы

Сообщества

18+

Теги

Популярные авторы

Сообщества

Игры

Теги

Популярные авторы

Сообщества

Юмор

Теги

Популярные авторы

Сообщества

Отношения

Теги

Популярные авторы

Сообщества

Здоровье

Теги

Популярные авторы

Сообщества

Путешествия

Теги

Популярные авторы

Сообщества

Спорт

Теги

Популярные авторы

Сообщества

Хобби

Теги

Популярные авторы

Сообщества

Сервис

Теги

Популярные авторы

Сообщества

Природа

Теги

Популярные авторы

Сообщества

Бизнес

Теги

Популярные авторы

Сообщества

Транспорт

Теги

Популярные авторы

Сообщества

Общение

Теги

Популярные авторы

Сообщества

Юриспруденция

Теги

Популярные авторы

Сообщества

Наука

Теги

Популярные авторы

Сообщества

IT

Теги

Популярные авторы

Сообщества

Животные

Теги

Популярные авторы

Сообщества

Кино и сериалы

Теги

Популярные авторы

Сообщества

Экономика

Теги

Популярные авторы

Сообщества

Кулинария

Теги

Популярные авторы

Сообщества

История

Теги

Популярные авторы

Сообщества